Mathematics

Question

if the area of circular pond is 154 π square meter, find the radius of it's base ​

2 Answer


File Size: 23.8 MB
File Type: PDF / ePub
Uploaded on: 2024-01-18 05:10:00

READ ANOTHER ANSWER

Last checked: 1 hours 14 minutes ago!

Rating: 4.6/5 from 2955 votes.

  • Answer:

    r= 12.4m (3 s.f.)

    Step-by-step explanation:

    Area of circle= πr², where r is the radius

    154π= πr²

    Divide both sides by π:

    154= r²

    r²= 154

    Square root both sides:

    [tex]r = \sqrt{154} [/tex]

    r= 12.4m (3 s.f.)

  • Answer:

    The radius of circular pond is 12.4 m.

    Step-by-step explanation:

    Given :

    • ➠ Area of circular pond = 154π

    To Find :

    • ➠ Radius of circular pond

    Using Formula :

    [tex]\star\small{\underline{\boxed{\sf{\red{Area_{(Circle)} = \pi{r}^{2}}}}}}[/tex]

    • »» π = 22/7
    • »» r = radius

    Solution :

    Finding the radius of circular pond by substituting the values in the formula :

    [tex]{\dashrightarrow{\sf{Area_{(Circle)} = \pi{r}^{2}}}}[/tex]

    [tex]{\dashrightarrow{\sf{154 \pi = \pi{r}^{2}}}}[/tex]

    [tex]{\dashrightarrow{\sf{154 \times \dfrac{22}{7} = \dfrac{22}{7} \times {r}^{2}}}}[/tex]

    [tex]{\dashrightarrow{\sf{154 \times \cancel{\dfrac{22}{7}} = \cancel{\dfrac{22}{7}} \times {r}^{2}}}}[/tex]

    [tex]{\dashrightarrow{\sf{154 = {r}^{2}}}}[/tex]

    [tex]{\dashrightarrow{\sf{r = \sqrt{154} }}}[/tex]

    [tex]{\dashrightarrow{\sf{r \approx 12.4 }}}[/tex]

    [tex]\star{\underline{\boxed{\sf{\purple{r \approx 12.4 \: m }}}}}[/tex]

    Hence, the radius of circular pond is 12.4 m.

    [tex]\rule{300}{1.5}[/tex]