Mathematics

Question

PLZ HELP: Write each trinomial in the form a(x+b)^2 or a(x-b)^2:
5x^2 + 15x + 11.25
10x^2 +20x +10
1/4x^2 + x + 1
3x^2 + 5x + 25/12
MARKING BRAINLIEST TO BEST ANSWER

2 Answer


File Size: 23.8 MB
File Type: PDF / ePub
Uploaded on: 2024-01-18 05:10:00

READ ANOTHER ANSWER

Last checked: 1 hours 14 minutes ago!

Rating: 4.6/5 from 2955 votes.

  • Answer:

    solution given:

    A. 5x^2 + 15x + 11.25

    taking common 5

    5(x²+3x+11.25/5)

    since 11.25/5=2.25=(3/2)^2

    5(x²+2*x*3/2 +(3/2)²)

    5(x+3/2)²

    5(x+1.50)²

    B.10x^2 +20x +10

    taking common 10

    10(x²+2x+1)

    since x²+2x+1 is in a form of x²+2xy+y²

    so

    10(x+1)²

    C. 1/4x^2 + x + 1

    taking common 1/4

    while taking common we must balance the equation

    1/4(x² +4x+4)

    since x²+4x+1 is in a form of x²+2xy+y²: x²+2*x*2 +2²

    so

    1/4(x+2)²

    D. 3x^2 + 5x + 25/12

    taking common 3

    3(x²+5/3 x +25/(12*3))

    3(x²+2* x*5/6+25/36)

    since x²+2* x*5/6+25/36  is in a form of x²+2xy+y²: x²+2*x*5/6 +(5/6)²

    so

    3(x+5/6)²

    Step-by-step explanation:

  • Answer:

    Expand the two given forms:

    [tex]\begin{aligned}\implies a(x+b)^2 & =a(x+b)(x+b)\\& =a(x^2+2bx+b^2)\end{aligned}[/tex]

    [tex]\begin{aligned}\implies a(x-b)^2 & =a(x-b)(x-b)\\& =a(x^2-2bx+b^2)\end{aligned}[/tex]

    Therefore, to write each given trinomial in one of the given forms:

    • a = coefficient of x²
    • b = half the coefficient of x after a has been factored out

    [tex]\textsf{For }\quad 5x^2+15x+11.25:[/tex]

    Factor out the coefficient of x² (common term 5):

    [tex]\implies 5(x^2+3x+2.25)[/tex]

    Factor the perfect trinomial:

    [tex]\implies 5\left(x+\dfrac{3}{2}\right)^2[/tex]

    [tex]\textsf{For }\quad 10x^2+20x+10:[/tex]

    Factor out the coefficient of x² (common term 10):

    [tex]\implies 10(x^2+2x+1)[/tex]

    Factor the perfect trinomial:

    [tex]\implies 10\left(x+1\right)^2[/tex]

    [tex]\textsf{For }\quad \dfrac{1}{4}x^2+x+1:[/tex]

    Factor out the coefficient of x² (common term 1/4):

    [tex]\implies \dfrac{1}{4}(x^2+4x+4)[/tex]

    Factor the perfect trinomial:

    [tex]\implies \dfrac{1}{4}\left(x+2\right)^2[/tex]

    [tex]\textsf{For }\quad 3x^2+5x+\dfrac{25}{12}:[/tex]

    Factor out the coefficient of x² (common term 3):

    [tex]\implies 3 \left(x^2+\dfrac{5}{3}x+\dfrac{25}{36} \right)[/tex]

    Factor the perfect trinomial:

    [tex]\implies 3\left(x+\dfrac{5}{6}\right)^2[/tex]